National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Formation of Diffusion Barriers Using Chemical Vapour Deposition Process
Foltýnek, Jaroslav ; Němec, Karel (referee) ; Čelko, Ladislav (advisor)
Masters thesis deals with formation of diffusion barrier coatings by means of powder mixtures chemical vapor deposition. Its theoretical part is focused on the problems with diffusion barriers formation, where predominantly three most commonly used methods are introduced, i.e. CVD from powder mixtures, active gasses and slurries. The experimental part of master thesis deals with the formation of nickel-aluminide diffusion barriers on Inconel 713LC superalloy substrate, where was for aluminization used six different powder mixtures at the temperature of 800 °C and dwell of 0, 2 and 5 hours.
Research and Development of Technology for Surface Layers of Roll and Sliding Bearings Components
Němcová, Aneta ; Klakurková, Lenka (referee) ; Doležal, Pavel (advisor)
To increase of bearing steels properties are research and development of surface modifications well above dedicated, in present. Basic requirements to the surface modifications are high wear resistance and good temperature resistance (origin by friction). Surface modifications can not negatively influence properties of bearing steels as a substrate. One of the possibilities can be used surface modifications used for high temperature applications. These are based on saturation of substrate surface layer by Al (and Si) elements. This work deals with preparing of Al and Al-Si diffusion layers from slurries on 100Cr6 bearing steel surface and study of elements interaction between coating and bearing steel as a substrate during proceeding of protective layers at high temperatures. To elements interaction study light microscopy, scanning electron microscopy equipped by energy dispersive microanalyses, glow discharge optical emission spectrometry and microhardness measurement methods were used. To the evaluation of layer thickness image analyses was used.
Formation of Diffusion Barriers Using Chemical Vapour Deposition Process
Foltýnek, Jaroslav ; Němec, Karel (referee) ; Čelko, Ladislav (advisor)
Masters thesis deals with formation of diffusion barrier coatings by means of powder mixtures chemical vapor deposition. Its theoretical part is focused on the problems with diffusion barriers formation, where predominantly three most commonly used methods are introduced, i.e. CVD from powder mixtures, active gasses and slurries. The experimental part of master thesis deals with the formation of nickel-aluminide diffusion barriers on Inconel 713LC superalloy substrate, where was for aluminization used six different powder mixtures at the temperature of 800 °C and dwell of 0, 2 and 5 hours.
Research and Development of Technology for Surface Layers of Roll and Sliding Bearings Components
Němcová, Aneta ; Klakurková, Lenka (referee) ; Doležal, Pavel (advisor)
To increase of bearing steels properties are research and development of surface modifications well above dedicated, in present. Basic requirements to the surface modifications are high wear resistance and good temperature resistance (origin by friction). Surface modifications can not negatively influence properties of bearing steels as a substrate. One of the possibilities can be used surface modifications used for high temperature applications. These are based on saturation of substrate surface layer by Al (and Si) elements. This work deals with preparing of Al and Al-Si diffusion layers from slurries on 100Cr6 bearing steel surface and study of elements interaction between coating and bearing steel as a substrate during proceeding of protective layers at high temperatures. To elements interaction study light microscopy, scanning electron microscopy equipped by energy dispersive microanalyses, glow discharge optical emission spectrometry and microhardness measurement methods were used. To the evaluation of layer thickness image analyses was used.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.